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Problem Under Consideration 
The Virginia Tech life prediction methodology is applied to composite materials to determine a fundamental 
understanding of material behavior and life cycle issues (e.g. fatigue damage, creep, creep rupture).  Specific 
areas addressed to date in this activity include: (1) establishing the likely damage and failure modes for rotating 
machines; (2) constructing micromechanical models of the material failure modes; (3) constructing a 
methodology for the life analysis of composite rotors operating under high temperature and loading.   
 
Key Results 
In this effort, model predictions have been compared to the experimental strength distribution of a carbon 
fiber/polymer matrix composite.  Initially, the only material variability included in the prediction is the fiber 
strength distribution.  For this case, the computed strength distribution is much narrower than experimentally 
observed.  Including additional sources of material variability such as distributed fiber volume fractions, initial 
fiber fractures, and non-uniform fiber placement in the modeling yield results that are in excellent agreement 
with the experimental strength distribution.  It is shown that of all the additional sources of material variability 
considered, distributed fiber volume fractions have the greatest effect on the computed strength. 
 
Additionally, micromechanical models with no adjustable material parameters have been developed for the 
stress rupture lifetime of unidirectional polymer composites loaded in the fiber direction.  A general time-
dependent load-sharing framework is developed by applying shear-lag assumptions.  The time-dependent load-
sharing methodologies are included into Monte Carlo simulations to compute stress rupture lifetime.  The 
simulation approach is best suited to address the critical question of material reliability for a desired lifetime 
under a given set of external conditions.  Comparisons are made to the rupture lifetime of a carbon 
fiber/polymer matrix composite.  We have found encouraging quantitative agreement between the model 
composite measurements and the time-dependent load-sharing results.  In addition, we have found (based upon 
the modeling results) that one of the common assumptions made in predicting composite lifetimes (the strength-
life equal rank assumption) is invalid for stress rupture lifetime prediction.  Our simulation results also explain 
the large variations in measured composite rupture lifetimes.  In particular, it has been shown that a narrower 
fiber strength distribution results in longer lifetimes with greater variability.  Also, changing a certain 
combination of input parameters that controls the perturbed length of fiber due to a break does not produce any 
change in computed rupture lifetime.  Since the load-sharing is time and temperature dependent, lifetime 
predictions can be made at different temperatures.  Hence, the method presented here can be used to help 
understand and predict the role of temperature in accelerated measurement of stress rupture lifetimes.  The 
results of this effort have been incorporated into a journal article that is in review by the International Journal 
of Solids and Structures [1].  We have also been able to incorporate the results from these micromechanical 
models of stress rupture lifetime into residual strength based lifetime predictions (the MRLife approach) to 
predict combined fatigue and stress rupture effects. 
 
To validate these predictions, we have been involved in a collaborative effort with the Center for 
Electromechanics at the University of Texas at Austin.  Two different types of specimen geometry have been 
considered:  “flat coupons” fabricated by filament winding of T1000G/977-2 around a nominally flat panel and 
rings also fabricated by filament winding.  The flat coupons were to be used for initial validation of the 
modeling.  The tests considered were quasi-static tension, tension-tension fatigue loading (R=0.1), and stress 
rupture at two temperatures.  The results of the tensile testing are summarized in Table I.  As expected, we see 
considerable reduction in the tensile strength as a function of testing temperature (at 200ºF and 275ºF). 

Table I. Quasi-static test results 

Temperature (°F) Modulus (msi) Strength (ksi) Failure Strain (%) # tests 
70 25.3 ± 0.26 409 ± 35 - 5 
200 22.6 ± 1.0 339 ± 22 1.497 ± 0.198 5 
275 23.7 ± 0.46 364 ± 34 1.476 ± 0.076 5 



 
The results of the fatigue tests are shown in Figure 1.  There is a considerable reduction in fatigue lifetime at 
275ºF, although there are some concerns as a large percentage of the failures occurred in the vicinity of the grip 
region. 
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Figure 1.  Tension-tension fatigue test results on T1000G/977-2 coupons.  The value of Fa (the failure 
criterion) corresponds to the maximum fatigue stress divided by the ultimate strength at the 
corresponding temperature. 
 
A total of 4 stress-rupture tests were run at 200°F.  All either survived 25 hours of stress or slipped.  Two 
runouts were at Fa = 0.8 and a third was at 0.7.  All had remaining strengths higher than the initially measured 
quasi-static strength.  The final test was an incremental stress test designed to obtain creep data for the 
composite.  Several stress levels were examined using the same specimen and the stress-time profile is shown in 
Figure 2.  The resultant strain is shown in Figure 3.  The measured creep rates were on the order of 10-9/sec. 
 
 
At 275°F, 7 tests were run.  A number of other tests failed during the initial ramp.  The results are shown in 
Figure 4.  Two tests failed after approximately 10 hours, while the remaining five survived at least 25 hours.  
For these tests, the remaining strength was approximately 90% of the initial strength. 
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Figure 2. Stress-time profile 
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Figure 3. Strain versus time for incremental load test 
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Figure 4. 275°F stress-rupture results 
 
In addition to these coupon tests, hydroburst tests were conducted on the ring samples.  To date, three burst tests 
have been run successfully.  Two were room temperature quasi-static burst and the third was a 200°F quasi-
static burst test.  A stress-rupture test at 200°F was abandoned due to failure of the seal.  At 75°F the burst 
pressures were 3005 psi and 3191 psi.  These corresponded to hoop stresses of 470.9 ksi and 497.6 ksi.  At 
200°F the burst pressure was 3127 psi corresponding to a hoop stress of 486.8 ksi.  The measured modulus at 
75°F was 31 msi and has not been measured at 200°F.  These strengths are much higher than the corresponding 
values for the coupons, suggesting that grip failures may have occurred (perhaps due to the initial curvature of 
these nominally flat coupons). 
 
Publications and Presentations 
The following publications have resulted from this work: 
 
Journal Article:  Bandorawalla, T., Russell, B., Davison, S., and Case, S. “Micromechanics-Based Lifetime 
Prediction of Polymer Composites,” submitted to International Journal of Solids and Structures, April 2002. 
 
Conference Proceedings Article:  Krasnikovs, A., Bandorawalla, T., and Case, S.  “The Effect of Viscoelastic 
local relaxation at fibre breaks on time dependent failure in unidirectional materials,”  Keynote Address to be 
presented at Durability Analysis of Composite Systems:  DURACOSYS 2003, San Diego, July 20-23, 2003. 
 
Presentation:  Case, S., Lesko, J. and Reifsnider, K., “Strength-Based Lifetime Prediction of Composite 
Materials,”  Invited Lecture for DARPA Durability Workshop, Woodland Hills, CA, December 5-6, 2001. 
 
Scientific Personnel 
The first graduate student on this project (Tozer Bandorawalla) was awarded second place in the Virginia Tech 
College of Engineering Paul E. Torgersen Graduate Student Research Excellence Award.  This competitive 
award recognizes outstanding research efforts by College of Engineering graduate students.  He is currently 
employed by Intel. 



 
The second graduate student on this project (Sneha Patel Davison) has been awarded a P.E.O. scholar award, 
and will complete her Ph.D. studies in July 2003. 
 
The PI on this project (Scott Case) was named the Virginia Tech College of Engineering's Outstanding New 
Assistant Professor Award for 2002 based on his teaching and research achievements. 
 
The project has also been used to partially support a post-doctoral research assistant (Dr. Howard Halverson) 
who is responsible for experimental characterization of the composite materials, as well as model development. 
 
Inventions 
There were no inventions associated with this project. 
 
Technology Transfer 
This work was conducted in collaboration with Richard Thompson at the University of Texas-Center for 
Electromechanics (CEM) (funded by the Army separately).  Data generated at CEM was used for validation of 
the models developed in this study, and the analysis codes developed at Virginia Tech are being transferred to 
CEM to aid in its design process, thus providing a leveraging of the Army investment. 
 
To facilitate transfer to the Army, the results of the analysis techniques developed in this study have been 
incorporated into the MRLife lifetime prediction of composites code.  This is a Microsoft Windows compatible 
program with documentation to provide a stand-alone lifetime prediction analysis for composites subjected to 
mechanical and environmental loading conditions. 
 
Bibliography 
 
[1] T. Bandorawalla, B. E. Russell, S. R. Patel, and S. W. Case, “Micromechanics-Based Life Prediction of 
Polymer Composites,” submitted to International Journal of Solids and Structures. 
 
 



 1

APPENDIX 
 

MICROMECHANICS-BASED LIFE PREDICTION OF 
POLYMER COMPOSITES 

 
T. BANDORAWALLA,* B. E. RUSSELL,† S. R. PATEL,‡ S. W. CASE§ 

Department of Engineering Science & Mechanics 
Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. 
 
Abstract – This paper develops a Monte Carlo simulation technique to predict the 
stress-rupture lifetime of longitudinally loaded unidirectional polymer composites 
based on fiber and matrix properties.  Matrix viscoelasticity is cited as the primary 
cause of rupture failure.  Time-dependent matrix deformation leads to an increase 
in the overstressed length of unbroken fibers in the vicinity of a cluster of fiber 
fractures.  A general time-dependent load-sharing framework that is able to 
account for an arbitrary sequence of fiber fractures is developed.  Matrix 
deformations are based on the shear-lag assumption.  The time-dependent load 
sharing is incorporated into a Monte Carlo simulation for stress-rupture lifetime.  
Even though the only material variability included in the simulation is the fiber 
strength distribution, very broad lifetime distributions are computed.  The reasons 
for broad rupture lifetime distributions are discussed.  It is shown that the 
strength-life equal rank assumption does not apply for unidirectional polymer 
composites loaded in longitudinal tension because of fundamental differences 
between quasi-static and stress-rupture failure behavior.  Encouraging 
comparisons are made to the experimental rupture lifetime of carbon 
fiber/polymer matrix composites.  Finally, recommendations for improving the 
testing procedures for stress rupture of unidirectional composite materials are 
made. 
 
Keywords – Creep, Static fatigue, Reliability, Probability, Fiber stress 
redistribution 

1 INTRODUCTION 

The use of composite materials in engineering applications requires an understanding of their 

behavior under various loading conditions.  In particular, as composite materials are deployed in 

applications where several years of reliable service life are required, predictions of long-term 

 
* Corresponding author.  Present address: Fax: E-mail: 
† Visteon Corp. Rawsonville Plant, McKean & Textile Rd.,Ypsilanti, MI 48197, U.S.A. 
‡ 219 Norris Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. 
§ 120 Patton Hall, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A. 
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durability are necessary.  Because of the myriad of possible combinations of fiber and matrix 

materials, the best-case situation would be to make such predictions in terms of constituent 

properties.  This is the goal of the present study for the case in which failure is governed by 

tensile failure of the fibers in the composite.  A key aspect of this work is use of Monte Carlo 

simulations for lifetime prediction.  There is ample experimental evidence that the rupture 

lifetime of a material is not deterministic.  Hence, it is extremely important for life-prediction 

techniques to be able to determine component reliability at a given stress level for a desired 

lifetime.  The models presented in this work utilize probabilistic techniques to account for 

variability in fiber strength that translate into variability in lifetime. 

 

An important aspect of this work is time-dependent fiber stress redistribution, or load-sharing, in 

the vicinity of broken fibers.  Hedgepeth (1961) and Hedgepeth and Van Dyke (1967) introduced 

influence-function techniques to model quasi-static load sharing.  In this work time-dependent 

models for load sharing are required by assuming linearly elastic properties for the fibers and 

linearly viscoelastic matrix properties.  Lagoudas et. al. (1989) and Beyerlein et. al. (1998) have 

developed time-dependent load-sharing models within the shear-lag framework.  Lagoudas et. al. 

developed exact, closed-form, and approximate load-sharing solutions for a single unidirectional 

composite lamina with a cluster of adjacent coplanar fiber fractures.  They also extended their 

results to consider a growing cluster of coplanar breaks.  Beyerlein et. al. developed a more 

general approach called viscous break interaction (VBI).  They presented approximate and 

numerical techniques for arbitrarily positioned fiber fractures occurring simultaneously in a 

three-dimensional volume of material.  Although Beyerlein et. al. did suggest alterations to 

consider breaks that occurred sequentially in time, they did not present a complete analysis.  

Moreover, both Lagoudas et. al. and Beyerlein et. al. assumed a power law creep compliance 

model for the matrix material.  In this work we present a general approximate numerical 

framework for time-dependent load sharing that is able to account for arbitrarily positioned fiber 

fractures that occur sequentially in time.  A direct Laplace inversion approximation introduced 

by Schapery (1967) is used for the analysis.  This approximation makes it possible to 

accommodate a more general creep law that can be expressed as a Prony series.  Section 2 

discusses two different shear-lag based load-sharing methods: the traditional approach of 

Hedgepeth and Van Dyke, and a simplification where the load of a broken fiber is redistributed 
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only onto its nearest neighbors.  The two methods are compared to each other in Section 3.  A 

qualitative comparison is also made to time-dependent strain concentration measurements on 

model composites (Bandorawalla et. al., 2002a). 

 

Lifshitz and Rotem (1970) were the first to develop a micromechanical theory for stress-rupture 

of composite materials consisting of brittle fibers with probabilistic strengths embedded in a 

viscoelastic matrix.  It was widely believed that stress-rupture of polymer composites resulted 

from the time-dependent strength of some fibers (e.g. glass fibers).  Lifshitz and Rotem used 

their model to show that delayed failure can occur even when the fiber strengths are not time-

dependent.  Since most of the literature dealt with stress-rupture of glass-reinforced materials, 

Lifshitz (1971) conducted some preliminary tests to show that the stress-rupture phenomenon 

occurred in carbon-reinforced epoxies even though carbon fibers are widely believed to be free 

of any creep response.  Section 3 presents further experimental and theoretical confirmation of 

the mechanism that leads to delayed failure of longitudinally loaded unidirectional polymer 

composites even when fiber strengths are not time-dependent. 

 

In this work we develop Monte Carlo simulations to model the stress-rupture process in 

composites with a viscoelastic matrix.  Ibnabdeljalil and Phoenix (1995) have used similar 

Monte Carlo simulations to investigate the statistics of composite failure in brittle matrix 

composites resulting from fiber strength degradation.  Along similar lines, Iyengar and Curtin 

(1997a and 1997b) implemented Monte Carlo simulations for stress-rupture of metal and ceramic 

matrix composites due to the combined effect of strength degradation of the fibers, and matrix 

and interfacial shear creep.  Iyengar and Curtin (1997b) used the formulation of Du and 

McMeeking (1995) to model the effect of matrix creep resulting from time-dependent relaxation 

of normal and shear stresses in metal and ceramic matrix composites.  Theoretical models have 

also been developed to predict stress-rupture lifetimes of simple model composite systems with 

few fibers (Phoenix et. al., 1988; Otani et. al., 1991).  Making comparisons of the model 

predictions with rupture lifetimes of carefully controlled model systems provides valuable 

insight into the rupture failure process that helps with modeling “real” composite systems. 
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Section 4 develops the general stress-rupture simulation framework for longitudinally loaded 

unidirectional polymer composites consisting of linearly elastic fibers with Weibull strengths and 

a linearly elastic matrix.  Unidirectional polymer composites consistently fail in or near the 

gripped section of the specimen.  In order to alleviate this problem stress-rupture lifetimes are 

measured on an AS-4 carbon fiber/polyetheretherketone (PEEK) laminate with [90/03]s layup.  

The 90° surface plies carry a negligible fraction of the total load on the material and protect the 

inner core of load-carrying 0° plies.  Quasi-static strengths and rupture lifetime measurements on 

the AS-4/PEEK composite system are presented.  Comparisons between the rupture predictions 

and measurements on the AS-4/PEEK system are also presented in Section 4.  Section 5 

discusses the reasons for large variability in lifetime predictions by performing a study of the 

effect of certain material parameters on lifetime.  Section 5 also discusses the fundamental 

reasons why the strength-life equal rank assumption is not valid for modeling stress-rupture of 

unidirectional polymer composites.  The models further reinforce why it is necessary to prevent 

any initial grip-induced damage while measuring the rupture lifetime of unidirectional polymer 

composites.  Finally in Section 6, the major results and conclusions are summarized. 

2 TIME-DEPENDENT LOAD SHARING 

Bandorawalla et. al. (2002b) introduced a quasi-static framework to calculate the 

micromechanical fiber stress redistribution due to arbitrary fiber facture locations.  The 

technique was based in superposition of the effect of individual fiber fractures.  In this paper a 

similar framework is required that is able to compute time-dependent fiber stresses due to an 

arbitrary sequence of fiber fractures.  The time-dependent version is considerably more 

complicated.  The times at which fiber fractures occurred and their locations need to be taken 

into account to calculate the fiber stresses at any position and time.  This general time-dependent 

framework for load-sharing is developed in Section 2.1.  The fibers are assumed to be linearly 

elastic, while the matrix is assumed to be linearly viscoelastic.  It is shown that the effect of each 

fiber fracture is expressed as a convolution of the crack tip opening-displacement at the fiber 

fracture location and a time-dependent force influence-function.  The force influence-functions 

depend on geometric and material properties of the composite, and assumptions of the 

mechanism of load transfer (i.e. shear-lag, finite element) and number of neighboring fibers 

involved in this transfer.  Once again we draw on experience with modeling quasi-static load 
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sharing to compute the force influence-functions.  Two different types of load sharing are 

developed in Sections 2.2 and 2.3 depending on the technique used to calculate the force 

influence-functions.  They are called Nearest Neighbor Load Sharing (NNLS) and Hedgepeth 

and Van Dyke Load Sharing (HVDLS).  NNLS was developed by Bandorawalla et. al. (2002b) 

to model quasi-static fiber stress redistribution in unidirectional polymer composites.  NNLS 

assumes that the load of a broken fiber is redistributed only onto the nearest neighbors.  The 

authors believe that NNLS may be valid for time-dependent stress redistribution too.  HVDLS is 

a time-dependent extension of the traditional quasi-static technique introduced by Hedgepeth and 

Van Dyke (1967).  In HVDLS the load of a broken fiber is transferred onto all the surrounding 

fibers with preferential load transfer to the nearer fibers.  A comparison between the time-

dependent stresses calculated by the two approaches is made in Section 3. 

2.1 General Time-Dependent Load Sharing Concepts 

Consider a regular array of N × M hexagonally packed fibers of length X, as shown in Figure 1.  

The x-coordinate system is oriented perpendicular to the cross-sectional plane of the fibers.  This 

is the volume of material that will be considered for the Monte Carlo simulations for stress 

rupture presented in Section 4.  A far-field tensile axial stress σff H(t), is applied to the fibers, 

where H(t) is the Heaviside unit step function. 

 

The purpose of this section is to present a framework for calculation of axial fiber stress 

( )txmn ,,σ , in fiber (n, m), at time t, due an arbitrary sequence of fiber fractures occurring prior to 

time t.  Let b1, b2, b3…br fiber fractures occur at times t1, t2, t3…tr, respectively, such that 0 ≤ t1 < 

t2 < t3…tr ≤ t.  The total number of fiber fractures that have occurred by ti is Li = b1+…+bi for i = 

1,2,…r.  Hence, a total number of Lr fiber fractures have occurred by time t.  For convenience 

the fiber fractures are sequentially numbered as 1, 2,…Lr.  The fractures 1, 2,…Lr occur in fibers 

(n1, m1), (n2, m2)…(nLr, mLr) at axial locations x1, x2…xLr, respectively.  At ti the fiber fractures 

designated Li-1+1 through Li occur.  Naturally, L0 = 0.  Due to the far-field tensile stress σff, the 

broken fiber ends are separated by a displacement 2 ( )txu imn ii
,, , i = 1,2,…Lr.  The quantities 

( )txu imn ii
,, , i = 1,2,…Lr will be referred to as break opening-displacements.  ( )txkt

mn ,,σ , k = 
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1,2,…r, represent the fiber stresses at t ≥ tr due to only the Lk fiber fractures that have occurred 

by tk.  Similarly, ( )txu i
t

mn
k

ii
,, , k = 1,2,…r, represent the break opening-displacements at t ≥ tr 

due to only the Lk fiber fractures that have occurred by tk.  The only non-zero ( )txu i
t

mn
k

ii
,,  are 

for i = 1,2,…Lk.  Hence, the fiber stresses and break opening-displacements at t are given by 

( )txtx rt
mnmn ,),( ,, σσ =  (1)

and 

( )txutxu i
t

mnimn
r

iiii
,),( ,, =  (2)

respectively.  ( )txrt
mn ,,σ  and ( )txu i

t
mn

r

ii
,,  are calculated from the recursive relations 

( ) ( ) ( ) ( )kk
k

mn
t

mn
t

mn ttttxtxtx kk −−+= − H,,, ,,,
1 σσσ  (3)

and 

( ) ( ) ( ) ( )kki
k

mni
t

mni
t

mn ttttxutxutxu
ii

k

ii

k

ii
−−+= − H,,, ,,,

1  (4)

( )k
k

mn ttx −,,σ , k = 1…r represents the change in fiber stresses produced due to the set of bk 

fractures that occur at tk.  Similarly, ( )ki
k

mn ttxu
ii

−,, , k = 1…r represents the change in break 

opening displacements produced by the set of bk fractures that occur at tk.  Once again, the only 

non-zero ( )ki
k

mn ttxu
ii

−,,  are for i = 1…Lk.  If ( )k
k

mn ttx −,,σ  and ( )ki
k

mn ttxu
ii

−,,  are known 

the fiber stresses and break opening-displacements are readily obtained from Equations (1) 

through (4).  It should be pointed out that the virgin material state has no fiber fractures.  Hence 

when applying Equation (3) and (4) with k = 1, break opening-displacements ( )txu i
t

mn ii
,0

,  are 

non-existent and ( )txt
mn ,0

,σ  = σff H(t).  The remainder of Section 2.1 outlines the approach to 

calculate ( )k
k

mn ttx −,,σ  and ( )ki
k

mn ttxu
ii

−,, .  It is convenient to calculate ( )ki
k

mn ttxu
ii

−,,  and 

( )k
k

mn ttx −,,σ  in Laplace domain since the governing system of equations involve convolution 

integrals that are converted into a system of linear algebraic equations by Laplace 

transformation.  The time-domain results are then obtained in an approximate sense by 

Schapery’s (1967) direct Laplace inversion given by 
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( )
ts

sst
2

1
F)f(

=
≈  (5)

where ( )sF  is the Laplace transform of f(t) i.e. L  [f(t)] = ( )sF . 

 

Representative curves for ( )txi
t

mn
k

ii
,,σ  and ( )txu i

t
mn

k

ii
,,  as given by Equation (3) and (4), 

respectively, are shown in Figure 2 through Figure 7.  The fiber stresses at t ≥ tr due to only the 

Lk fiber fractures that have occurred by tk are given by 

( ) ( ) ( ) ( )
∑∫
=

−− ∂

∂
−−+=

k k

jj

jj

k

L

j

t
j

t
mn

jmmnnff
t

mn

xu
txxttx

1 0

,
,, d

,
,QH, β

β

β
βσσ  (6)

Equation (6) is simply an expression of superposition of the far-field stress and the perturbation 

due to each fiber break in the composite material.  ( )txmn ,Q ,  is the axial stress produced in fiber 

(n, m), at location x, calculated by applying a Heaviside unit step opening-displacement, i.e. H(t), 

to a break in fiber (0,0) at x = 0.  ( )txmn ,Q ,  is called the time-dependent force influence-function.  

( )txmn ,Q ,  depends on geometric and constitutive properties of the fibers and matrix and the load 

sharing assumptions i.e. NNLS, HVDLS, shear-lag, etc.  Calculation of ( )txmn ,Q ,  is presented in 

Section 2.2 and 2.3. 

 

To begin the solution process, we note that the Laplace transform of Equation (6) is given by 

( ) ( ) ( )∑
=

−− −+=
k

k

jjjj

k

L

j
j

t
mnjmmnn

fft
mn sxussxx

s
sx

1
,,, ,,Q,

σ
σ  (7)

From Figure 2 through Figure 4 it is apparent that Equation (4) can be simplified to 

( ) ( ) ( )kki
k

mni
t

mn ttttxutxu
ii

k

ii
−−= H,, ,, , for i = Lk-1+1…Lk (8)

since these fiber fractures i = Lk-1+1…Lk do not exist until tk.  Comparing Equation (8) with 

Equation (4) reiterates that 

( ) 0,1
, =− txu i

t
mn

k

ii
, for i = Lk-1+1…Lk (9)
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i.e. breaks i = Lk-1+1…Lk do not exist before tk.  Equation (4) applies as is for all breaks i = 

1…Lk-1 (i.e. the breaks that exist before tk).  Substituting the Laplace transforms of Equations (4) 

and (8) into Equation (7) yields 

( ) ( ) ( ) ( )[ ]

( ) ( ) k
k

k

jjjj

k
k

jj

k

jjjj

k

st
L

Lj
j

k
mnjmmnn

L

j

st
j

k
mnj

t
mnjmmnn

fft
mn

esxussxx

esxusxussxx
s

sx

−

+=
−−

=

−
−−

∑

∑

−

−
−

−

++−+=

1
,,

1
,,,,

1

1
1

,,Q                 

,,,Q,
σ

σ

 (10)

We can rewrite Equation (7) to find ( )sxkt
mn ,1

,
−σ  

( ) ( ) ( )∑
−

−−

=
−− −+=

1
11

1
,,, ,,Q,

k
k

jjjj

k

L

j
j

t
mnjmmnn

fft
mn sxussxx

s
sx

σ
σ  (11)

Substituting Equation (11) into Equation (10) yields 

( ) ( ) ( ) ( ) k
k

jjjj

kk st
L

j
j

k
mnjmmnn

t
mn

t
mn esxussxxsxsx −

=
−−∑ −+= −

1
,,,, ,,Q,, 1σσ  (12)

Comparing the Laplace transform of Equation (3) with Equation (12) shows that 

( ) ( ) ( )∑
=

−− −=
k

jjjj

L

j
j

k
mnjmmnn

k
mn sxussxxsx

1
,,, ,,Q,σ  (13)

Applying Equation (12) to the break locations 1…Lk yields a system of equations given by 

( ) ( )

( ) ( ) k

L

j

st
j

k
mnjimmnn

i
t

mni
t

mn

Liesxussxx

sxsx
k

k

jjjiji

k

ii

k

ii

…1,2,for   ,,,Q                

,,

1
,,

,,
1

=−+

=

∑
=

−
−−

−σσ

 (14)

In order to calculate the unknowns ( )sxu j
k

mn jj
,, , j=1,2,…Lk, in Equation (14) it is necessary to 

consider two separate cases.  For Case I, Equation (14) is applied to the location of breaks that 

occurred before tk.  For Case II, Equation (14) is applied to the location of breaks that occur at tk. 

2.1.1 Case I (i = 1…Lk-1) 

From Figure 5 through Figure 7 it is apparent that Equation (3) can be simplified to 

( ) ( )txtx i
t

mni
t

mn
k

ii

k

ii
,, 1

,,
−= σσ , for i = 1…Lk-1 (15)
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since these fiber fractures have occurred by tk-1.  The state of stress at (ni, mi) and xi, i = 1…Lk-1 is 

unchanged by any further fiber fractures that occur after tk-1.  This is reinforced by comparing 

Equation (15) with Equation (3) which implies that 

( ) ( ) 0H,, =−− kki
k

mn ttttx
ii

σ , for i = 1…Lk-1 (16)

Substituting the Laplace transform of Equation (15) into Equation (14) yields the system of 

equations given by 

( ) ( )∑
=

−− −=
k

jjjiji

L

j
j

k
mnjimmnn sxussxx

1
,, ,,Q0 , for i = 1…Lk-1 (17)

Equation (17) requires that the additional break opening-displacements that occur at tk do not 

alter the stress state at the location of breaks that occurred before tk. 

2.1.2 Case II (i = Lk-1+1…Lk) 

Applying Equation (3) to the stress at breaks i = Lk-1+1…Lk yields 

( ) ( ) ( ) ( )kki
k

mni
t

mni
t

mn ttttxtxtx
ii

k

ii

k

ii
−−+= − H,,, ,,,

1 σσσ  (18)

From Figure 5 through Figure 7 it is apparent that 

( ) ( ) ( ) ( )ki
t

mnkki
k

mn tttxttttx k

iiii
−−=−− − H,H, 1

,, σσ , for i = Lk-1+1…Lk (19)

since the stresses at (ni, mi) and xi, i = Lk-1+1…Lk go to zero at tk.  Substituting the Laplace 

transform of Equation (18) into Equation (14) yields the system of equations given by 

( ) ( ) ( )∑
=

−− −=
k

jjjijiii

L

j
j

k
mnjimmnni

k
mn sxussxxsx

1
,,, ,,Q,σ , for i = Lk-1+1…Lk (20)

Equation (20) together with Equation (19) requires that the additional break opening-

displacements at tk cause the stresses at the location of breaks that occur at tk to vanish. 

 

Collectively, Equations (17) and (20) represent Lk linear algebraic equations that can be solved 

for ( )sxu j
k

mn jj
,, , j = 1…Lk, provided ( )sxi

k
mn ii

,,σ  in Equation (20) is known.  It will be shown 

that Equation (19) can be used to obtain ( )sxi
k

mn ii
,,σ , i = Lk-1+1…Lk.  Once ( )sxu j

k
mn jj

,, , j = 

1…Lk are calculated, the Laplace transform of Equation (4) and (2) can be used to calculate the 
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break opening-displacements in Laplace domain.  Moreover, Equation (13), and the Laplace 

transforms of Equations (3) and (1) can be used to calculate the fiber stresses in Laplace domain.  

Hence, a complete solution to the problem is readily available in Laplace domain.  In order to 

calculate the time-domain solution Equation (5) is used as described below. 

 

Within the context of Schapery’s direct inversion 

( ){ } ( ) ( )
( )ats

sa ssats
−=

−− −≈
2

1
1 FHFeL  (21)

Hence, the approximate inverse Laplace transform of Equation (12) is 

( ) ( )

( ) ( ) ( )
( )

∑
= −

=
−− −−+

≈ −

k

k

jjjj

kk

L

j tt
s

j
k

mnjmmnnk

t
mn

t
mn

sxussxxtt

txtx

1 2
1,

2
,

,,

,,QH                       

,, 1σσ

 (22)

Similarly, Equation (4) becomes 

( ) ( ) ( ) ( )
( )k

ii

k

ii

k

ii
tt

si
k

mnki
t

mni
t

mn sxustttxutxu
−

=
−+≈ −

2
1,,, ,H,, 1

 (23)

From Equations (22) and (23) it is apparent that ( )sxu j
k

mn jj
,, , j = 1…Lk, is required at s = 1/[2(t-

tk)].  Hence, the solution to Equations (17) and (20) is obtained at s = 1/[2(t-tk)] for each k =1…r.  

Equations (17), (20), (22), and (23) are used recursively starting with k = 1 through k = r.  The 

final time-domain fiber stresses and break opening-displacements are given by Equations (1) and 

(2), respectively. 

 

We still need to calculate ( )sxi
k

mn ii
,,σ , i = Lk-1+1…Lk in Equation (20).  For t ≥ tk Equation (19) 

is simply 

( ) ( )txttx i
t

mnki
k

mn
k

iiii
,, 1

,,
−−=− σσ , for i = Lk-1+1…Lk (24)

Making the change of variables t′= t – tk in Equation (24) gives 

( ) ( )ki
t

mni
k

mn ttxtx k

iiii
+′−=′ − ,, 1

,, σσ , for i = Lk-1+1…Lk, and t′ ≥ 0 (25)

Within the context of Laplace inversion given by Equation (5) 
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( ) 





≈

ss
s

2
1f1F  (26)

Using Equation (26) to evaluate the Laplace transform of ( )txi
k

mn ii
′,,σ  

( ) 





≈

s
x

s
sx i

k
mni

k
mn iiii 2

1,1, ,, σσ  (27)

Using Equation (25) to evaluate the to evaluate the right hand side of Equation (27) gives 

( ) 





 +−≈ −

ki
t

mni
k

mn t
s

x
s

sx k

iiii 2
1,1, 1

,, σσ , for i = Lk-1+1…Lk (28)

Hence, within the Laplace inversion approximation given by Equation (5), Equation (28) is the 

left hand side of Equation (20).  As mentioned earlier, Equations (17) and (20) are solved for 

( )sxu j
k

mn jj
,, , j = 1…Lk, at s = 1/[2(t-tk)].  Evaluating Equation (28) at s = 1/[2(t-tk)] gives 

( )
( )

( ) ( )txttsx i
t

mnk
tt

si
k

mn
k

ii

k

ii
,2, 1

,
2

1,
−−−≈

−
=

σσ , for i = Lk-1+1…Lk (29)

Equation (29) is substituted into Equation (20).  Because of the recursive approach to solving the 

problem starting with k = 1,2,…r, ( )txkt
mn ,1

,
−σ  on the right hand side of Equation (29) is available 

for all (n, m) and x before ( )sxu j
k

mn jj
,, , j = 1…Lk, is calculated. 

2.2 Time-Dependent NNLS 

In order to implement the general load-sharing framework discussed in Section 2.1, it is 

necessary to obtain the Laplace transform of the force influence-functions i.e. ( )sxmn ,Q , .  As 

mentioned in Section 2.1, ( )txmn ,Q ,  is the axial stress produced in fiber (n, m), at location x, due 

to a unit step opening-displacement, i.e. H(t), at an isolated break in fiber (0,0) at x = 0.  If 

uniform hexagonal packing is assumed, every fiber fracture location perturbs its surroundings in 

exactly the same manner.  Hence, only a single set of Laplace-domain force influence-functions, 

with n = 1-N…N-1, m = 1-M…M-1, x = -X…X, needs to be calculated. 
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The analysis in this section is based on NNLS assumptions.  Consider a typical broken fiber (i, j), 

as shown in Figure 1.  Fiber (i, j) has a break at x = 0.  Under NNLS assumptions, only the axial 

fiber stresses within the hexagonal area are perturbed due to this single break.  This would imply 

that all the force influence-functions expect for Q0,0(x,t), Q1,0(x,t), Q0,1(x,t), Q-1,1(x,t), Q-1,0(x,t), 

Q0,-1(x,t), Q1,-1(x,t) are identically equal to zero.  Moreover, the perturbation due to a fiber 

fracture decreases rapidly for axial distance x, from the fiber fracture plane.  For distances 

greater than xp from the plane of a fiber fracture, the stress perturbation vanishes.  This length xp, 

is a function of the fiber and matrix stiffness and the fiber volume fraction.  Also, due to 

symmetry all the force influence-functions of the nearest neighbors are equal i.e. Q1,0(x,t) = 

Q0,1(x,t) = Q-1,1(x,t) = Q-1,0(x,t) = Q0,-1(x,t) = Q1,-1(x,t), and Qn,m(-x,t) = Qn,m(x,t) for all (n,m).  

Hence for NNLS, it is only necessary to calculate ( )sx,Q 0,0  and ( )sx,Q 0,1  for x = [0, xp].  Once 

( )sx,Q 0,0  and ( )sx,Q 0,1  are calculated for x = [0 xp] the foregoing load sharing is applicable for 

any axial length X > xp.   

 

For notational convenience in the discussion that follows, the broken fiber and its six neighbors 

are numbered from 1-7 as shown in Figure 1.  Hence, Q0,0(x,t) = Q1(x,t), Q1,0(x,t) = Q4(x,t), 

Q0,1(x,t) = Q3(x,t), etc.  Let v1(x,t), v2(x,t),…v7(x,t) be the displacements of fibers 1 through 7, 

respectively.  Under shear-lag assumptions 

{ } { }V
x

EQ f d
d

=  

where { }

( )
( )
( )
( )
( )
( )
( )

( )
( )
( )
( )
( )
( )
( )
































=

































=

−

−

−

−

tx
tx
tx
tx
tx
tx
tx

tx
tx
tx
tx
tx
tx
tx

Q

,Q
,Q
,Q
,Q
,Q
,Q
,Q

,Q
,Q
,Q
,Q
,Q
,Q
,Q

0,1

1,0

1,1

0,1

1,0

1,1

0,0

7

6

5

4

3

2

1

 and { }

































=

),(
),(
),(
),(
),(
),(
),(

7

6

5

4

3

2

1

txv
txv
txv
txv
txv
txv
txv

V  
(30)

As shown in Figure 1, the distance between the centers of two adjacent fibers is denoted by d, 

and w = d – 2rf, where rf is the fiber radius.  Let Gm(t) be the shear relaxation modulus of the 

matrix, Ef be the fiber axial Young’s modulus, and Af be the fiber cross-sectional area.  Shear-lag 
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assumptions are applied to the seven highlighted fibers in Figure 1 and the governing system of 

equations for fiber displacements is obtained as 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ ] 0d,6,,,,,,
0

17654322
1

2

=−+++++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvxvxvxvtGC
x
v

ββββββββ
β

β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

23172
2

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v

βββββ
β

β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

34122
3

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v

βββββ
β

β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

45132
4

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v βββββ

β
β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

54162
5

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v

βββββ
β

β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

65172
6

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v βββββ

β
β  

( ) ( ) ( ) ( ) ( )[ ] 0d,3,,,
0

76122
7

2

=−++
∂
∂

−+
∂
∂

∫
t

m xvxvxvxvtGC
x
v

βββββ
β

β  

(31)

where 

wEA
hC

ff

=  (32)

h is the thickness of the matrix shear spring that can be approximated as h = (πrf)/3.  The 

boundary conditions for calculating the influence-functions are 

( ) )H(,01 ttv = ; 

( ) ( ) ( ) ( ) ( ) ( ) 0,0,0,0,0,0,0 765432 ====== tvtvtvtvtvtv  for t ≥ 0; 

and 
( ) 0,

=
∂

∂

∞=x

n

x
txv

, for n = 1…7 and t ≥ 0; 

(33)

and the initial conditions are 

( ) 00, =xvn , for n = 1…7, x = [0, ∞] (34)
The Laplace transform of Equation (31) is 
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{ } ( ) [ ]{ } 0
d
d

2

2

=+ VACsGsV
x m  (35)

where 

where { }

































=

),(
),(
),(
),(
),(
),(
),(

7

6

5

4

3

2

1

sxv
sxv
sxv
sxv
sxv
sxv
sxv

V , and [ ]





























−
−

−
−

−
−

−

=

1100011
1310001
0131001
0013101
0001311
1000131
1111116

A  (36)

The Laplace transform of the boundary conditions given by Equation (33) is 

( ) ssv 1,01 = ; 

( ) ( ) ( ) ( ) ( ) ( ) 0,0,0,0,0,0,0 765432 ====== svsvsvsvsvsv ; 

and 
( ) 0
d

,d
=

∞=x

n

x
sxv

, for n = 1…7 

(37)

Equations (35) through (37) represent a boundary value problem in x.  The eigenvalues of [A] are 

-λ1, -λ2,…-λ7, and the orthonormal eigenvectors of [A] are {V1}, {V2},…{V7}.  Since [A] is a real 

symmetric matrix, it is always possible to find a set of orthonormal eigenvectors.  The solution of 

the system of Equations (35) through (37) is given by 
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{ } [ ]

( )[ ]
( )[ ]

( )[ ]













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


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



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−

−

−

=
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VV
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7
7

2
2

1
1

exp

exp

exp

~

λ

λ

λ

#
 

where [ ] { } { } { }[ ]721
~ VVVV "= , and 

[ ]











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







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



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
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~ T
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1 s

V

a
a
a
a
a
a
a

 

(38)

[ ]V~  is a 7×7 matrix with the eigenvectors as columns.  The force-influence-functions in Laplace 

domain are obtained from Equation (38) and the Laplace transform of Equation (30).  They are 

given by 

( )
( )

( )

( )
( )

( )

[ ]

( )
( )[ ]

( )
( )[ ]

( )
( )[ ]
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−
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sx
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m
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m
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m
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7
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2

1
1

1
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1

0,1

1,1

0,0

exp

exp

exp

~

,Q

,Q
,Q

,Q

,Q
,Q

λ
λ

λ
λ

λ
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#
##

 (39)

and ( )sxmn ,Q ,  = 0 for all n and m.  As described in Section 2.1, Equations (17), (20), (22), (23) 

need to be evaluated at s = 1/[2(t-tk)].  There are singularities in Equations (17), (20), (22), (23), 

and (39) at t = tk, k = 1…r.  Hence, it is necessary to rewrite these equations to remove the 

singularities so that stresses and break opening-displacements can be computed even at the 

instants fiber fractures occur i.e. t = tk, k = 1…r. 

 

The shear relaxation modulus can be written as a Prony series 
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( ) ∑ 







−+= ∞

i i
im

tGGtG
τ

exp  (40)

Taking the Laplace transform of Equation (40) and multiplying by s gives 

( ) ∑
+

+= ∞
i

i

i
m

s

GGsGs

τ
11

 
(41)

For s = 1/[2(t-tk)], Equation (41) becomes 

( ) ( )
( ) ( )∑ −

+
+==− ∞

−
= i

i

k

i

tt
smk tt

GGsGstt
k

τ
21

B
2

1  
(42)

Evaluating Equation (39) at s = 1/[2(t-tk)] yields 
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##  (44)

and ( )sxmn ,q ,  = 0 for all other n, m.  It should be pointed out that in the final numerical solution 

of Equation (44) for ( )sxmn ,q ,  there is only one eigenmode because 5 of the 7 ai’s and one of the 

λi’s are zero.  Evaluating Equation (17) and (20) at s = 1/[2(t-tk)] gives the system of equations 
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(45)

Equation (45) represents Lk linear algebraic equations that are solved for the quantity 

( )sxus j
k

mn jj
,, , j = 1…Lk, at s = 1/[2(t-tk)].  In order to obtain Equation (45), it is necessary to 

substitute Equation (29) into Equation (20).  Finally, Equation (22) is rewritten as 

( ) ( )

( ) ( ) ( )[ ]
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= −
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≈ −
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j tt
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 (46)

The final time-dependent solution procedure is as follows.  Equation (45), (46), and (23) are 

solved recursively starting from k = 1 through k = r.  Finally, the fiber stresses and break opening 

displacements due to the arbitrary sequence of breaks are given by Equation (1) and (2), 

respectively. 

 

If the shear creep compliance Jm(t), is available instead of Gm(t) then B(t-tk) needs to be 

redefined.  The Prony series for the creep compliance is 
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Taking the Laplace transform of Equation (47) and multiplying by s gives 
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)(sJ m  and )(sGm  are related by 
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2.3 Time-Dependent HVDLS 

In order to implement the HVDLS, it is necessary to develop a new set of ( )sxmn ,q ,  for x = [0, 

xp].  Consider regular hexagonal fiber packing as shown in Figure 1.  The displacement of fiber 

(n, m), at axial position x, is denoted by vn,m(x).  Equation (51) is the system of equation for fiber 

displacements obtained under shear-lag assumptions. 

( ) ( ) ( ) ( ) ( )[
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The boundary conditions for calculating influence-functions are 

( ) ( )ttv H,00,0 = ; 

( ) 0,0, =tv mn  for all n, m other than n = m = 0 and t ≥ 0 

and 
( )

0
,, =

∂
∂

∞=x

mn

x
txv

, for all n, m and t ≥ 0 

(52)

and the initial conditions are 
( ) 00,, =xv mn , for all n, m and x = [0, ∞] (53)

The Laplace transform of Equations (51) and (52) is 

[ ] 06 
d

d
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,
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mn vvvvvvvGCs
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 for all n, m (54)

with boundary conditions 



 19

( ) ssv 1,00,0 = ; 

( ) 0,0, =sv mn , for all n, m other than n = m = 0 

and 
( )

0
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∂
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x
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(55)

Equation (54) is solved by applying the discrete Fourier transform given by 
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The inverse Fourier transform is given by 
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Applying the Fourier transform implies periodicity in the n and m directions.  Hence, the state of 

fiber (n, m), at location x, is the same as the state of fiber (n+N, m+M), at location x.  Substituting 

Equation (56) into Equations (54) and (55) yields 
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with boundary conditions 
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The solution to Equations (58) and (59) is given by 
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Substituting Equation (60) into Equation (56) yields 
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(61)

Finally, the force influence-functions in Laplace domain are given by 
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The differences between NNLS and HVDLS are apparent in the solution approaches.  Equation 

(61) is the solution to a coupled system of NM ordinary differential equations given by Equations 

(54) and (55).  The NNLS is obtained by solving a set of seven coupled ordinary differential 

equations for the broken fiber and its nearest six neighbors as shown in Section 2.2. 

 

For HVDLS the quantity ( )sxmn ,q ,  in Equations (45) and (46) is 
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(63)

where B(t-tk) is given by Equation (42) or Equation (50) for shear relaxation modulus or creep 

compliance, respectively.  Similar to Equation (43) 
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2.4 Time-Dependent Load Sharing Based on Finite Elements 

It is possible to generate force influence-functions in Laplace domain by finite element analysis 

of a single fractured fiber surrounded by one or more hexagonally packed rings of neighboring 

fibers.  Bandorawalla et. al. (2002b) developed this approach for quasi-static NNLS.  For time-

dependent force influence-functions, a transient finite element analysis with linearly elastic fiber 

properties and linearly viscoelastic matrix properties would be required.  Displacement boundary 

conditions would be applied in the fiber direction to produce a far-field axial strain of εff H(t) in 

the fibers.  Time-dependent axial fiber stresses ( )txmn ,fem
,σ , would then be calculated for the 

broken and neighboring fibers.  Let the broken fiber be designated (0, 0) and the fracture be in 
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the x = 0 plane.  The time dependent break opening-displacement ( )tu fem , of the single fiber 

fracture would also be available from the finite element analysis.  ( )txmn ,fem
,σ  and ( )tu fem  could be 

fit to a Prony series.  The Laplace transform of these two quantities are related by 

( ) ( ) ( )sussx
s

sx mn
ff

mn
fem

,
fem
, ,Q, +=

σ
σ  (65)

from which ( )sxmn ,Q , , and hence ( )sxmn ,q , , could be calculated.  The difficulties associated 

with calculating influence-functions in Laplace domain by the finite element method outlined 

above are: 

1. Sufficient mesh refinement for spatial convergence of results. 

2. Sufficiently small increments in time for temporal convergence of results. 

3. Accounting for residual thermal stresses due to cure shrinkage in the macromodel 

composites if quantitative comparison is to be made to time-dependent load-sharing 

measurements of Bandorawalla et. al. (2002a). 

For the reasons cited above, the shear-lag load-sharing techniques described in Sections 2.2 and 

2.3 are used for the stress-rupture lifetime predictions made in this paper. 

3 COMPARISON BETWEEN NNLS AND HVDLS 

Representative stress profiles in neighboring fibers caused by an isolated break in fiber (0, 0) at x 

= 0 are shown in Figure 8 through Figure 11.  The axial location along the fiber is expressed in 

terms of the fiber radius, rf.  Under NNLS only the stress in the nearest neighbor is perturbed as 

shown in Figure 8.  Although the far-field fiber stress is held constant, matrix viscoelasticity 

causes the overloaded length on unbroken fibers adjacent to a fiber fracture location to increase 

with time.  Consequently, there is a greater probability of fiber failure occurring in these 

unbroken fibers.  This time-dependent fiber stress redistribution is the primary cause of failure in 

a unidirectional polymer matrix composite under longitudinal stress-rupture loading.  Similar 

trends in the time dependence of stresses calculated by HVDLS are seen in Figure 9 through 

Figure 11.  The HVDLS results are computed for a 10�10 array of hexagonally packed fibers.  

HVDLS predicts a lower peak stress concentration than NNLS in the fibers closest to the 

fractured fiber.  However, the HVDLS approach also produces a small perturbation of the 

stresses in the next to nearest neighbors as shown in Figure 10 and Figure 11.  The peak stress 
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concentration on the next to nearest neighboring fibers is much smaller than on the nearest 

neighbors.  An important consequence of shear-lag assumptions is that the peak stress 

concentration due to an isolated fiber fracture does not change with time.  In fact this peak stress 

concentration is not a function of any geometric or material properties of the composite if regular 

hexagonal fiber packing is assumed.  It should also be pointed out that since under shear-lag 

assumptions the matrix does not carry any normal tensile stress there is no provision in the 

analysis to account for an increase in the far-field fiber stress with time due a viscoelasticity-

based decrease of the tensile load carried by the matrix.  This is not a serious source of error 

since for most polymer matrix composites with high fiber volume fractions and high fiber to 

matrix stiffness ratios the total tensile load carried by the matrix is negligible. 

 

The stresses in the broken fiber decrease with time as shown in Figure 12.  Although Figure 12 

shows stresses calculated by NNLS, very similar curves are obtained for HVDLS.  It is unlikely 

for another break to occur in the under-stressed region of a broken fiber.  Hence, the decrease of 

axial stress in a broken fiber with time is not the controlling mechanism for stress-rupture failure 

in unidirectional polymer composites. 

 

Bandorawalla et. al. (2002a) made in-situ fiber strain concentration measurements in 

macromodel composites with fibers that were large enough that strain gages could be mounted 

directly onto the surface of the fibers.  The time-dependent strain concentration measurements 

agreed with the trends described in this paper for both the broken fibers and the unbroken 

neighbors.  Representative measurements on unbroken neighboring fibers with two adjacent 

coplanar fiber fractures are shown in Figure 13.  The axial positions of the gages referenced to 

the plane of fiber fractures are denoted by x in Figure 13.  The presence of multiple adjacent 

fiber fractures produces a more pronounced change in strain concentration with time than for an 

isolated fiber fracture.  The model composite measurements provide a qualitative verification for 

the load sharing philosophy described in Section 2.  A detailed time-dependent finite element 

analysis of the model composite domain is necessary to make a quantitative comparison between 

the measurements and modeling approach.  The finite element model could then be used to 

establish whether NNLS or HVDLS is more appropriate for modeling time-dependent 

micromechanical stress redistribution in unidirectional composite materials.  This procedure was 
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followed by Bandorawalla et. al. (2002b) to investigate the applicability of shear-lag models for 

quasi-static load sharing. 

4 STRESS-RUPTURE LIFETIME MODELING 

A Monte Carlo simulation is used to predict the stress-rupture lifetime of a unidirectional 

composite material.  Micromechanical stress redistribution can be calculated by applying either 

the NNLS or HVDLS described in Section 2.  Initial rupture lifetimes are measured on a 

unidirectional carbon fiber/polymer matrix composite.  The difficulties associated with 

measuring rupture lifetimes of unidirectional systems are discussed, and rupture lifetimes are 

obtained for an alternate material system with 90° plies on the surface.  Comparisons between 

the simulation predictions and lifetime measurements on the alternate material system are 

presented. 

4.1 Rupture Simulation Approach 

Failure of unidirectional composite materials loaded in tension in the fiber direction is controlled 

by failure of fibers.  The stochastic simulation approach attempts to track the progression of fiber 

fractures leading to eventual composite failure.  All material property inputs to the simulation 

other than the fiber strength are assumed to be deterministic.  A Weibull distribution given by 
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describes the probability of failure Pf, of a fiber of length l, at a stress level σ.  σo is the Weibull 

location parameter, and m is the fiber Weibull modulus or shape parameter.  σo is interpreted as 

the stress level required to cause one failure on average in a fiber of length lo.  m is related to the 

variability in fiber strength, with a higher m for a narrower distribution.  Weibull parameters for 

the strength distribution of certain fibers are available in the literature (e.g. Wimolkiatisak and 

Bell, 1989). 

 

An outline of the stress-rupture simulation procedure and the representative volume of material 

with fibers and matrix is shown in Figure 14.  Uniform hexagonal fiber packing is assumed.  In 

order to track the location of fiber fractures every fiber is subdivided into the same number of 
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elements along its length as shown in Figure 14.  A fracture is allowed to occur at a random 

location within each fiber element.  Landis et. al. (2000) have reported that positioning a break at 

random within a fiber element significantly reduces the number of elements along each fiber 

required for convergence of the simulation results.  Values of strength are assigned to the fiber 

elements by using the Weibull strength distribution of Equation (66).  While the distribution of 

fiber strength remains the same, the actual element strengths change for every computation of 

rupture lifetime.  To begin the simulation process, the far-field axial fiber stress σff, is increased 

to the fiber stress level at which rupture lifetimes are desired i.e. rupt
ffσ .  This initial ramp up is 

assumed to occur instantaneously, and depending on the rupture stress level may result in fiber 

element failures.  During the initial ramp up, fiber stress redistribution is calculated by applying 

the quasi-static version of load sharing using the instantaneous matrix modulus since ramp up is 

assumed to be instantaneous and hence matrix viscoelasticity does not play a role.  The general 

time-dependent load sharing framework is easily specialized to determine the instantaneous 

stress redistribution.  This is achieved by using Equations (45), (46), (23), (1), and (2) to 

compute fiber stresses at t = 0 due to a single set of b1 breaks that occur simultaneously at t1 = 0.  

The ramp up is carried out by increasing the far-field stress to cause failure of the next weakest 

element only if no further fiber element failures occur due to stress redistribution at the current 

far-field stress level.  Once rupt
ffσ  is attained, the far-field fiber stress is held constant and the time 

level is incremented to cause failure of fiber elements.  The mechanism for tensile stress rupture 

of unidirectional polymer composites is discussed in Section 3.  The time level is incremented in 

a geometric progression to maximum of t = tmax.  This results in a linear increase in time on a 

logarithmic scale.  At each new time level fiber stresses are computed and a check is performed 

for further fiber element failures.  If a fiber failure is detected at a current time level, it is 

assumed to have occurred at an intermediate time halfway between the previous time level and 

the current time level.  Following the notation developed in Section 2.1, the most recent fiber 

failures occur at tr.  Local stress redistribution may result in further fiber element failures at the 

same time level.  These additional failures are assumed to occur at tr, and hence, br may increase 

due to stress redistribution alone.  The time level is incremented only after no further fiber 

element failures occur at the same time level.  The process is repeated until the surviving fiber 

elements in a cross-section of the simulation volume can no longer sustain the global load i.e. 
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stress rupture material failure is predicted.  The time level at this point is the calculated rupture 

lifetime of the simulation volume.  It is also possible that stress rupture failure does not occur by 

tmax, in which case a runout is predicted.  In order to expedite the simulation process two 

techniques are implemented: 

1. If all the fiber elements are intact after the initial ramp up, then the time-dependent load-

sharing framework described in Section 2 will not predict any change in fiber stresses 

with time, and hence, no fiber element failures at all.  This is a consequence of assuming 

that the fibers are linearly elastic and that the matrix is capable of sustaining only shear 

stresses.  Hence, it is not necessary to progressively increase the time level as a runout 

will be predicted if no fiber element failures occur during the initial ramp up. 

2. Even if a few fiber failures do occur during the initial ramp up, no additional fiber 

fractures may occur in tmax due to time-dependent fiber stress evolution.  This is very 

easily checked by directly computing the stresses at tmax due to only those fiber fractures 

that occur during the initial ramp up.  If the stresses at tmax are not large enough to cause 

failure of any additional fiber elements then a runout is predicted without having to 

progressively increase the time level. 

3. A single set of ( )
tsmn sx

21, ,q
=

 is calculated for all (n, m) at a discrete number of points 

over t = [0, tmax] and x = [0, xp].  ( )
tsmn sx

21, ,q
=

 is computed at equally spaced axial 

positions over x = [0, xp].  The temporal variation is obtained by computing ( )
tsmn sx

21, ,q
=

 

at t = 0 and for additional equally spaced times on a logarithmic scale over t = (0 tmax].  

Linear interpolation in x and the logarithm of t is used to determine ( )
tsmn sx

21, ,q
=

 at an 

arbitrary axial position and time, respectively. 

 

Before the simulation procedure described above can be used to obtain lifetimes the far-field 

fiber stress level rupt
ffσ  needs to be established.  The first step in this process is to compute the 

composite strength distribution of the simulation volume (Bandorawalla et. al., 2002b).  This is 

achieved by ramping up the far-field fiber stress instantaneously and calculating fiber stress 

redistribution with the quasi-static version of load sharing as described earlier in this section.  

The composite strength of the simulation volume corresponds to the far-field fiber stress at 
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which all the fiber elements in a cross-sectional plane fail.  100 strengths are computed in this 

manner.  The computed composite strengths of the simulation volume conform to a Weibull 

distribution with a location and shape parameter given by sim~
oσ  and sim~m , respectively.  The 

second step in establishing rupt
ffσ  is to measure strengths of the composite material under 

consideration.  The experimental composite strengths conforms to a Weibull distribution with 

location and shape parameter exp~
oσ  and exp~m , respectively.  The experimental rupture lifetimes 

are measured at a composite stress level of Rexp exp~
oσ .  The composite stress level for performing 

the rupture simulations is Rsim sim~
oσ .  Rsim is calculated by equating the experimental 

instantaneous probability of failure of the composite at Rexp exp~
oσ  to the instantaneous probability 

of failure of the simulation volume at Rsim sim~
oσ .  Thus, 

( ) ( ) 



−−=


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−−=

simexp ~
sim

~
exp exp1exp1 mm

f RRP  (67)

Finally, the far-field fiber stress level for the rupture simulation is given by 

f

o
ff V

R simsim
rupt

~σσ =  (68)

4.2 Material Systems 

Initial measurements of rupture lifetime are made on a Grafil 34-700 standard 

modulus/polyphenylene sulfide (PPS) pultruded unidirectional composite tape.  The 

experimental composite strengths of the Grafil carbon fiber/PPS composite conform to a Weibull 

distribution with exp~
oσ = 1.57 GPa and exp~m = 29.4 at a gage length ol

~ = 76 mm.  The composites 

have a fiber volume fraction Vf , of 40%.  The experimental rupture lifetimes of the Grafil carbon 

fiber/PPS composite are shown in Figure 15.  When the stress rupture simulation was used to 

predict lifetime, two significant inconsistencies between experimental lifetimes and the 

predictions were observed: 

1. The simulation methodology over-predicted stress rupture lifetimes, and 

2. The rupture lifetime predictions had much greater variability than the experimental 

lifetimes. 
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Measuring the tensile strength and rupture lifetime of purely unidirectional composite materials 

poses certain challenges.  Although the specimens are tabbed as shown in Figure 16, the 

application of grip pressure unavoidably causes material damage and fiber fractures in the 

gripped section of the specimen.  The time-dependent propagation of these defects in the grip 

section during stress rupture loading dominates the failure behavior of purely unidirectional 

specimens.  The tabbing materials used consisted of 100-count (100 wires per linear inch) 

stainless steel screen and 1000 series aluminum sheet that was 0.02 inches thick.  A piece of 

screen is folded in half over the ends of the specimen, and an aluminum piece is folder over the 

screen on the ends of the specimen as shown in Figure 16.  It is difficult to adhesively bond 

tabbing material such as Grade G-10 Garolite woven glass fiber laminates to a PPS-based 

composite.  Even with adhesively bonded tabs failures were observed in or near the gripped 

section due to a high stress concentration. 

 

In order to alleviate the problems caused by grip-induced damage stress-rupture lifetimes are 

measured on an alternate material system with 90° external plies.  Composite panels with a 

[90/03]s layup are compression molded from APC-2 prepreg supplied by Cytec Industries.  APC-

2 prepreg consists of AS4 carbon fiber with a thermoplastic polyetheretherketone (PEEK) 

matrix.  The specimens have a fiber volume fraction of 54% and a gage length of 76 mm with a 

rectangular cross-section of 1 mm × 12.7 mm, nominally.  The tabbing method described earlier 

in this section is used to test the APC-2 composite.  However, a finer 200-count (200 wires per 

linear inch) stainless steel screen was used instead of the 100-count screen.  The finer tabbing 

screen and the 90° external plies protect the load carrying 0° plies from damage in the gripped 

section.  Figure 17 shows a typical failed Grafil/PPS unidirectional specimen along with a typical 

failed APC-2 [90/03]s specimen.  While it is difficult to pinpoint where initial and ultimate failure 

occurred in the Grafil/PPS unidirectional specimens, all the APC-2 [90/03]s specimens 

consistently failed in the gage section.  In Section 5 the stress-rupture models described in this 

paper will be used to reiterate why it is necessary to prevent grip-induced damage for reliable 

rupture lifetime measurements. 

 

The relative stiffness of the 0° and 90° laminae in the direction of the tensile load is used to 

determine that each of the 90° plies carry approximately 1.7% of the total load on the [90/03]s 
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laminate.  Hence, it can safely be assumed that the contribution of the 90° plies to the strength 

and lifetime of the laminate is negligible. 

 

Two batches of the APC-2 laminate are fabricated.  Although both batches had the same fiber 

volume fraction and lay-up, very different strength distributions are measured as shown in Table 

1.  The reason for this inconsistency is not clear, although, it may be the result of unintended 

differences in the temperature cycle during processing.  The quasi-static strengths of the APC-2 

specimens are measured at two temperatures: 125°C and 140°C.  All the tests are performed by 

using a Material Testing System (MTS) servohydraulic machine.  The strengths are measured 

with a loading rate of 445 N/sec.  Since the primary interest is rupture lifetimes, very few 

specimens are used to measure quasi-static strength.  The quasi-static strength of only three 

specimens is measured at each temperature for the Weibull parameters of Batch I.  The quasi-

static strength of five specimens is measured at each temperature for the Weibull parameters of 

Batch II.  The rupture lifetimes of the APC-2 specimens are also measured at two temperatures: 

125°C and 140°C.  The load profile for the tensile rupture tests consists of an initial ramp at 445 

N/sec and a subsequent hold at the desired load.  All the lifetime measurements from both Batch 

I and Batch II are displayed in Figure 18.  However, because of the marked difference in the 

strength of Batch I and Batch II they are treated separately when calculating Rexp in Figure 18.  

The test is stopped after approximately 4 days, and any specimen that does not fail in that period 

of time is treated as a runout.  The data points corresponding to instantaneous failures in Figure 

18 are placed at 0.1 seconds.  It is immediately apparent that there is a very large variability in 

rupture lifetimes at each stress level.  Hence, it is very important that a life prediction technique 

be stochastic in nature, and be able to compute material reliability at a given stress level and 

temperature.  It will be shown that the Monte Carlo simulation technique described here is 

particularly well suited to do this. 

 

However, the experimental results for rupture lifetime shown in Figure 18 (and the simulation 

predictions shown later) should always be interpreted in light of the quasi-static strength 

distribution for two important reasons.  Firstly, the strength distribution can be used to establish 

the probability of instantaneous failure at a given rupture stress level.  Secondly, a material 

system with greater variability in quasi-static strength may intuitively be expected to possess a 
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greater variability in stress-rupture lifetime.  For example, there is a significant variability in the 

quasi-static strength distribution for Batch II that may translate into greater variability in rupture 

lifetime measurements for Batch II (although in Section 5 it is shown that the strength-life equal 

rank assumption does not hold for longitudinally loaded unidirectional polymer composites). 

 

The fiber strength statistics, fiber stiffness and geometry, and the viscoelastic shear properties of 

the matrix are required to implement the stress rupture simulation described in Section 4.1.  

Wimolkiatisak and Bell (1989) have studied the strength of Hercules AS4 carbon fibers using the 

single-fiber fragmentation test.  Their data can be used to calculate the following parameters for 

the Weibull strength distribution of AS4 carbon fibers: σo = 5.25 GPa, lo = 1 mm, and m = 10.65.  

The axial Young’s modulus of AS4 carbon fibers Ef = 234.4 GPa, and the fiber radius rf = 3.5 

µm.  The shear creep compliance master curve and shift factors shown in Figure 19 are generated 

from short term creep data of neat PEEK at several temperatures.  Flexural mode creep tests 

were conducted in a TA Instruments Dynamic Mechanical Analyzer (DMA) 2920.  It should be 

pointed out that approximate shear properties are calculated from flexural mode tests in a DMA.  

Figure 19 gives the shear creep compliance of PEEK over several decades of time at any 

temperature from 124°C to 205°C.  With this information predictions of rupture lifetime can be 

obtained at any temperature from 124°C to 205°C.  Hence, the simulation technique described 

here can be used to understand and predict the role of temperature in accelerated measurement of 

stress-rupture lifetimes. 

4.3 Stress-Rupture Simulation Results 

The Monte Carlo simulation approach is used to predict stress rupture lifetimes of the APC-2 

composite at 125°C and 140°C.  The material properties described in Section 4.2 are used for the 

lifetime predictions. 

 

As mentioned earlier, the first step is to compute a quasi-static strength distribution.  The 

strength distribution is required at both 125°C and 140°C.  The specialization of load-sharing 

described in Section 4.1 for instantaneous ramp up would not predict different quasi-static 

strengths at different temperatures since it is based on the instantaneous shear compliance of the 
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matrix.  For temperature dependent strength predictions, it is necessary consider finite ramp up 

rates with temperature and time dependent viscoelastic shear properties for the matrix material.  

The general load-sharing approach developed in Section 2 cannot be easily modified to account 

for a finite ramp rate α, in the far-field fiber stress, because the Laplace inversion approximation 

given by Equation (5) is developed for problems where all inputs are step-functions in time 

applied at t = 0 (Schapery, 1967).  An approximation is used to compute load sharing with a 

finite ramp rate for far-field fiber stress.  The stresses at time t are computed by treating the far-

field stress α t as if it were a step-function in time applied at t = 0 i.e. ( )ttff Hrupt ασ = .  With this 

technique it is possible to use time and temperature dependent matrix shear properties to 

compute temperature dependent quasi-static strength distributions.  However, the loading rate of 

445 N/sec is high enough that time and temperature depend matrix deformation does not play a 

significant role in the strength predictions and the same strength distribution is computed at both 

temperatures.  100 strength computations are performed on a simulation volume consisting of a 

10 × 10 array of fibers with axial length X = 0.47 mm.  The Weibull parameters obtained from 

the 100 strength values are shown in Table 2.  Different strength distributions are obtained by 

applying NNLS and HVDLS.  It should be pointed out that sim~
oσ  is computed for unidirectional 

APC-2, while the strengths reported in Table 1 are for the [90/03]s laminate.  Since the 90° plies 

may be assumed to carry no load, sim~
oσ  for the [90/03]s laminate may be assumed to be 3/4th of 

the values reported in Table 2. 

 

Figure 20 through Figure 23 show rupture lifetime predictions for the APC-2 material.  All the 

rupture lifetime predictions are performed with a tmax of 4 days.  The simulation volume 

consisting of a 10 × 10 array of fibers with axial length X = 0.47 mm. 

 

Figure 20 and Figure 21 are the rupture lifetimes predictions at 125°C and 140°C, respectively, 

calculated with NNLS.  The rupture lifetime predictions are plotted along with the experimental 

results.  At each Rexp, 100 rupture lifetimes are comsputed.  The numbers displayed with the 

symbol ‘←’ represent experimental and predicted instantaneous failures.  The symbol ‘→’ and 

its associated number represent experimental and predicted runouts in 4 days.  The number of 

measured and predicted runouts may be regarded as the experimental and predicted reliability of 
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the material to withstand the given stress level and temperature for a desired lifetime of 4 days.  

The horizontal brace and its associated number refer to the measured and predicted rupture 

failures that occur within 4 days.  Rsim, and hence, the far-field fiber stress level for the rupture 

simulation is calculated by equating the experimental probability of instantaneous failure with 

the probability of instantaneous failure for the simulation volume as given by Equation (67).  The 

number of instantaneous failures predicted by the simulation as a fraction of 100 is 

approximately equal to the probability of instantaneous failure at each stress level and 

temperature.  Since more experimental measurements are made for Batch II, a complete 

comparison is obtained at the lower Rexp in Figure 20 and Figure 21.  The simulations predict 

more runouts at the lower temperature of 125°C than at 140°C.  Consequently, far fewer rupture 

failures are predicted at 125°C than at 140°C.  Although, the experimental measurements are 

limited, they appear to have a similar trend of longer lifetimes at 125°C than at 140°C.  It is 

encouraging to note that at fraction of instantaneous failures, rupture failures in 4 days, and 

runouts show a close correlation between the measurements and predictions at 140°C and the 

lower Rexp. 

 

Similarly, the rupture lifetimes computed with HVDLS at 125°C and 140°C are shown in Figure 

22 and Figure 23, respectively.  The HVDLS also predicts longer lifetimes at lower 

temperatures.  Comparing the rupture lifetimes obtained by NNLS and HVDLS, it appears as if 

the HVDLS technique predicts shorter lifetimes.  As explained in Section 3, for HVDLS a single 

fractured fiber perturbs the stresses in all the neighboring fibers and there is an increase in the 

overstressed region of all the unbroken fibers with time.  For NNLS, only the stresses in the 

nearest unbroken neighbors is perturbed due to single fractured fiber.  Hence, stress rupture 

lifetimes computed with NNLS are longer than lifetimes computed with HVDLS. 

5 VARIABILITY IN RUPTURE LIFETIME PREDICTIONS 

Figure 24 shows a simple composite lamina consisting three parallel fibers.  The figure attempts 

to illustrate the differences in the progression of fiber fractures leading to ultimate failure when 

the stress level is continually increased (as with strength measurement) and when the stress level 

is held constant (as with stress-rupture lifetime measurement).  With quasi-static strength 

measurement the far-field stress level is continually increased, and hence, the critical cluster of 
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fiber fractures that ultimately causes failure of the material is not confined to a specific location.  

However, under stress-rupture conditions further fiber failures can only occur in the immediate 

vicinity of the initial fiber fractures caused by the rapid ramp-up to the desired creep level (see 

Section 3).  In fact, if shear-lag assumptions are valid, fiber fractures will not occur in the zone 

of material where there are no initial fractures.  Hence, it is apparent that the stress-rupture 

lifetime is very sensitive to the initial fiber fractures caused by the stress ramp-up, since these 

initial fiber fractures are the sites that nucleate further fiber failures with time.  The computed 

rupture lifetime distribution is largely dictated by two factors: 

1. The number of fiber element failures after the initial ramp-up, and 

2. the strengths of the fiber elements in the neighborhood of these initial failure locations. 

The above discussion serves to reiterate how important it is to ensure that no initial fiber damage 

is produced in the gripped section when measuring the stress-rupture lifetime of unidirectional 

polymer composite specimens.  If initial fiber damage is produced in the gripped section of the 

specimen all subsequent fiber fractures will necessarily occur in the gripped section.  Moreover, 

for a larger number of contiguous initial fiber fractures in the gripped section the measured 

lifetimes will be shorter and have a narrower distribution. 

 

The strength-life equal rank assumption states that a statistically stronger specimen will have a 

longer lifetime.  Although the strength-life equal rank assumption is intuitive and is often used to 

simplify life prediction modeling efforts, it cannot be experimentally proved or disproved.  The 

Monte Carlo simulation technique can be used to show that the strength-life equal rank 

assumption does not hold for longitudinally loaded unidirectional polymer composites, since a 

different sequence of fiber fractures leads to ultimate failure under quasi-static and time-

dependent conditions.  This difference in the sequence of fiber fractures can be studied by 

assigning the same set of strengths to the fiber elements to compute a composite strength and a 

composite lifetime.  Also, by computing several such sets of composite strengths and lifetimes it 

can be shown that there is no direct correlation between initial strength and lifetime. 

 

In this section, the authors also investigate the reasons for large variability in computed lifetimes 

three different sets of input parameters are studied as described below.  A total of 100 rupture 
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lifetimes are computed for each set of input parameters.  All the results obtained in this section 

are computed by applying NNLS. 

5.1 Case I: Control Case 

The first set of input parameters is the same as the geometric and material parameters for the 

APC-2 composite at 140°C given in Section 4.2.  This is the control case.  However, for the 

results presented in this section tmax is increased to 3.1×1018 sec so that a more complete 

distribution of rupture lifetimes is calculated as shown in Figure 25.  The results displayed in 

Figure 25 are calculated with a far-field fiber stress level 5.0
ffσ , which corresponds to a 50% 

probability of instantaneous failure. 

5.2 Case II: Narrower Fiber Strength Distribution 

The rupture lifetimes shown in Figure 26 are calculated with all the same input parameters as the 

control case except for the Weibull shape parameter for fiber strength which is changed from m = 

10.65 to m = 25.0.  This corresponds to a narrower fiber strength distribution than the control 

case.  The results displayed in Figure 26 are also calculated with a far-field rupture stress level 
5.0

ffσ , which corresponds to a 50% probability of instantaneous failure.  It is apparent that longer 

rupture lifetimes with greater variability are computed with m = 25.0.  Increasing the Weibull 

shape parameter for fiber strength from m = 10.65 to m = 25.0 does not change the composite 

strength distribution significantly.  Hence, the far-field fiber stress level for rupture 5.0
ffσ , is 

essentially unchanged.  5.0
ffσ  is at the tail end of the fiber strength distribution, and since the Case 

II fibers have a much narrower strength distribution, fewer fiber element failures occur due to the 

instantaneous ramp up than in Case I.  This results in longer rupture lifetimes, and greater 

variability in the computed lifetimes. 

5.3 Case III: Shorter Perturbed Axial Length Due to Fiber Fracture 

For this case, a combination of geometric and material parameters is altered from its value in the 

control case.  The factor ( )Ctt k−B  in Equation (44) is related to the perturbed length along the 

broken or neighboring fiber due to a fiber fracture.  B(t-tk) is essentially the shear relaxation 
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modulus of the matrix Gm(t-tk), and C is related to the fiber radius, fiber volume fraction, and 

fiber axial modulus as given by Equation (32).  ( )Ctt k−B  is changed to 4 times its value in the 

control case which has the effect of halving the perturbed axial length at all times.  As with the 

previous two cases, the rupture simulation is performed at a far-field rupture stress level 5.0
ffσ , 

which corresponds to 50% probability of instantaneous failure.  As shown in Figure 27, there is 

no significant change in the computed lifetime distribution calculated by increasing ( )Ctt k−B  to 

4 times its control value.  Similar results are obtained by increasing ( )Ctt k−B  to 9 times its 

control value.  These results may be counterintuitive at first.  There are, however, two competing 

effects that negate each other so that the computed lifetime at 5.0
ffσ  is unchanged.  These two 

competing effects are: 

1. The overstressed length on an unbroken fiber near a fiber fracture location is reduced by 

a given factor at all times when compared to the control case.  By itself this would tend to 

increase lifetimes. 

2. Decreasing the overstressed length results in an increase in quasi-static strength, and 

hence, the far-field fiber stress level at which the simulation is performed i.e. 5.0
ffσ .  By 

itself this would tend to decrease lifetime. 

6 SUMMARY AND CONCLUSIONS 

This paper develops a micromechanical technique for predicting the lifetime of unidirectional 

polymer composites loaded under tensile stress-rupture conditions.  It is assumed that stress 

rupture in unidirectional composite materials occurs as a result of viscoelastic deformation in the 

matrix.  The time-dependent response of the matrix causes an increase in the overstressed length 

on unbroken fibers near a cluster of fiber fractures.  This increases the probability of failure of 

the unbroken fibers, and consequently the probability of failure of the composite material as a 

whole.  The formulation presented in this work assumes linearly viscoelastic matrix behavior. 

 

The first step in this effort is to develop a general framework for micromechanical stress 

redistribution due to an arbitrary sequence of fiber fractures.  An approximate technique using 

Boltzmann superposition of time-dependent influence functions is developed.  Two different sets 
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of influence-functions are calculated based on different shear-lag load-sharing assumptions.  The 

first set of influence functions assume that the load of a broken fiber is redistributed only onto 

the nearest neighbors.  This form of load sharing is termed Nearest Neighbor Load Sharing 

(NNLS) and it is developed because model composite experiments and finite element analysis of 

micromechanical load redistribution show that NNLS is applicable under quasi-static conditions 

(Bandorawalla et. al., 2002b).  The second set of time-dependent influence functions are 

developed by extending the traditional quasi-static analysis of Hedgepeth and Van Dyke (1967).  

A favorable comparison is made between the time-dependent load sharing analysis and 

measurements of the strain redistribution in model composites. 

 

The load sharing framework is incorporated into a Monte Carlo simulation to predict the stress 

rupture lifetime of unidirectional composite materials.  An encouraging comparison is made 

between predicted and measured lifetimes of a [90/03]s APC-2 composite laminate at 125°C and 

140°C.  Long-term time and temperature dependent viscoelastic properties of the matrix material 

are easily obtained by applying time-temperature superposition principles to short-term creep or 

relaxation data measured in a dynamic mechanical analyzer at several temperatures.  This 

information is supplied to the simulation to predict long-term rupture lifetimes at any 

temperature.  In this manner the simulations help understand and predict the role of temperature 

in accelerated measurement of stress rupture lifetimes.  The extreme variability in rupture 

lifetimes makes it very important for predictive techniques to be able to assess composite 

reliability for a desired lifetime at a given stress level and temperature.  The Monte Carlo 

simulation approach is particularly well suited to determine reliability under stress rupture 

conditions. 

 

Measuring the stress-rupture lifetime of purely unidirectional composites is challenging because 

initial damage occurs in the gripped section of the specimen.  The rupture lifetime of a 

unidirectional specimen is very sensitive to the number and location of the initial fiber fractures.  

Large initial damage in the gripped section necessarily leads to ultimate material failure in the 

gripped section.  This paper puts forward recommendations to alleviate this problem by testing 

specimens with a [90/0n]s layup.  The surface 90° plies protect the 0° layers from damage in the 
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grip section while at the same time carrying a negligible fraction of the total load.  Consistent 

gage section failures are observed when testing the [90/03]s APC-2 composite specimens. 

 

In order to understand the reasons for large variability in computed rupture lifetimes a parametric 

study is performed by varying some of the input quantities to the model.  It is shown that 

decreasing the variability in fiber strengths produces longer and more variable lifetimes.  

Unexpectedly, the rupture lifetime distribution is unchanged by altering the perturbed axial 

length due to a fiber fracture.  This latter study is performed by changing a combination of 

geometric and material parameters such that the perturbed length is halved at all times.  The 

lifetimes computed at a stress level that yields a 50% probability of instantaneous failure are 

unaffected. 

 

The strength-life equal rank assumption is an intuitive argument that has no experimental basis, 

and it is very often used to simplify modeling efforts for life prediction of composite materials.  

A major conclusion of this work is to show that the strength-life equal rank assumption is not 

valid for longitudinally loaded unidirectional polymer composites, since an entirely different 

progression of fiber fractures leads to eventual composite failure when the far-field stress is 

continually increased (as with measuring fast-fracture strength) and when it is held constant (as 

with measuring stress-rupture lifetime). 
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Figure 1.  Hexagonally packed array of fibers with fiber numbering scheme 
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Figure 2.  Break opening-displacements for breaks 1…L1 due to first Lk 

fractures 
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Figure 3.  Break opening-displacements for breaks L1+1…L2 due to first Lk 

fractures 
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Figure 4.  Break opening-displacements for breaks Lk-1+1…Lk due to first Lk 

fractures 
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Figure 5.  Fiber stresses at breaks 1…L1 due to first Lk fractures 
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Figure 6.  Fiber stresses at breaks L1+1…L2 due to first Lk fractures 
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Figure 7.  Fiber stresses at breaks Lk-1+1…Lk due to first Lk fractures 
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Figure 8.  Stress in fiber (1,0) due to isolated break in shaded fiber at x = 0 

computed with NNLS 
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Figure 9.  Stress in fiber (1,0) due to isolated break in shaded fiber at x = 0 

computed with HVDLS 
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Figure 10.  Stress in fiber (2,0) due to isolated break in shaded fiber at x = 0 

computed with HVDLS 
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Figure 11.  Stress in fiber (1,1) due to isolated break in shaded fiber at x = 0 

computed with HVDLS 
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Figure 12.  Stress in broken fiber (0,0) due to isolated break at x = 0 

computed with NNLS 
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Figure 13.  Model composite measurements of strain concentrations due to a 

two adjacent coplanar fiber fractures 
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Figure 14.  Flowchart of Monte Carlo simulation for stress rupture lifetime with 

representative volume element (RVE) 



 45

 

 

0.84

0.86

0.88

0.90

0.92

0.94

1.E+00 1.E+01 1.E+02 1.E+03 1.E+04 1.E+05 1.E+06
Time to rupture (sec)

R
ex

p
90°C test data

80°C test data

70°C test data

 
Figure 15.  Stress rupture lifetimes of Grafil carbon fiber/PPS unidirectional 

composite 
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Figure 16.  Tabbing of specimens for tensile strength 

and stress rupture testing 
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Figure 17.  Failed specimens.  (a) Grafil carbon fiber/PPS 
unidirectional composite (b) APC-2 [90/03]s laminate 
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Figure 18.  Stress rupture lifetime of APC-2 [90/03]s specimens 
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Figure 19.  Master curve and shift factors for shear creep compliance 

of PEEK 
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Figure 20.  Rupture lifetime predictions for APC-2 composite at 125°C (NNLS) 
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Figure 21.  Rupture lifetime predictions for APC-2 composite at 140°C (NNLS) 
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Figure 22.  Rupture lifetime predictions for APC-2 composite at 125°C (HVDLS) 
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Figure 23.  Rupture lifetime predictions for APC-2 composite at 140°C (HVDLS) 
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Figure 24.  Failure behavior of unidirectional polymer composites.  (a) Quasi-static 

failure (b) Stress-rupture failure 
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Figure 25.  Lifetime distribution for control case 
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Figure 26.  Lifetime distribution with narrower fiber strength distribution 
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Figure 27.  Lifetime distribution with shorter perturbed axial length along a 

broken or neighboring fiber due to a fiber fracture 
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Table 1.  Quasi-static strength of APC-2 [90/03]s (strengths reported at 76 mm gage length) 
 BATCH I BATCH II 
 exp~

oσ  (GPa) exp~m  
exp~
oσ  (GPa) exp~m  

125°C 1.56 24.7 1.78 6.6 
140°C 1.42 32.3 1.69 9.0 
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Table 2.  Quasi-static strength predictions of unidirectional APC-2 Vf = 54% obtained by 
applying two different load-sharing techniques (strengths reported at X = 0.47 mm) 

 sim~
oσ  sim~m  

NNLS 2.60 47.5 
HVDLS 2.72 80.1 

 

 




